Let a_1, b_1, c_1 and a_2, b_2, c_2 be the direction ratios of \vec{b}_1 and \vec{b}_2 , respectively. Then

$$\overrightarrow{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

$$\vec{b}_1 = a_1\hat{i} + b_1\hat{j} + c_1\hat{k} \text{ and } \vec{b}_2 = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$$

The given lines are coplanar if and only if $\overrightarrow{AB} \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2}) = 0$. In the cartesian form, it can be expressed as

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Example 21 Show that the lines

$$\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5} \text{ and } \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5} \text{ are coplanar}$$

Solution Here, $x_1 = -3$, $y_1 = 1$, $z_1 = 5$, $a_1 = -3$, $b_1 = 1$, $c_1 = 5$ $x_2 = -1$, $y_2 = 2$, $z_2 = 5$, $a_2 = -1$, $b_2 = 2$, $c_2 = 5$

Now, consider the determinant

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = 0$$

Therefore, lines are coplanar.

11.8 Angle between Two Planes

Definition 2 The angle between two planes is defined as the angle between their normals (Fig 11.18 (a)). Observe that if θ is an angle between the two planes, then so is $180 - \theta$ (Fig 11.18 (b)). We shall take the acute angle as the angles between two planes.

If \vec{n}_1 and \vec{n}_2 are normals to the planes and θ be the angle between the planes

$$\vec{r} \cdot \vec{n}_1 = d_1$$
 and $\vec{r} \cdot \vec{n}_2 = d_2$.

Then θ is the angle between the normals to the planes drawn from some common point.

$$\cos \theta = \left| \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|} \right|$$

Note The planes are perpendicular to each other if $\vec{n}_1 \cdot \vec{n}_2 = 0$ and parallel if \vec{n}_1 is parallel to \vec{n}_2 .

Cartesian form Let θ be the angle between the planes,

 $A_1 x + B_1 y + C_1 z + D_1 = 0$ and $A_2 x + B_2 y + C_2 z + D_2 = 0$

The direction ratios of the normal to the planes are A_1 , B_1 , C_1 and A_2 , B_2 , C_2 respectively.

Therefore,
$$\cos \theta = \left| \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \right|$$

- Note

- 1. If the planes are at right angles, then $\theta = 90^{\circ}$ and so $\cos \theta = 0$. Hence, $\cos \theta = A_1A_2 + B_1B_2 + C_1C_2 = 0$.
- 2. If the planes are parallel, then $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

Example 22 Find the angle between the two planes 2x + y - 2z = 5 and 3x - 6y - 2z = 7 using vector method.

Solution The angle between two planes is the angle between their normals. From the equation of the planes, the normal vectors are

Therefore
$$\overrightarrow{N}_{1} = 2\hat{i} + \hat{j} - 2\hat{k} \text{ and } \overrightarrow{N}_{2} = 3\hat{i} - 6\hat{j} - 2\hat{k}$$

$$\cos \theta = \left| \frac{\overrightarrow{N}_{1} \cdot \overrightarrow{N}_{2}}{|\overrightarrow{N}_{1}| |\overrightarrow{N}_{2}|} \right| = \left| \frac{(2\check{i} + \check{j} - 2\check{k}) \cdot (3\check{i} - 6\check{j} - 2\check{k})}{\sqrt{4 + 1 + 4} \sqrt{9 + 36 + 4}} \right| = \left(\frac{4}{21}\right)$$
Hence
$$\theta = \cos^{-1}\left(\frac{4}{21}\right)$$

2019-20

Example 23 Find the angle between the two planes 3x - 6y + 2z = 7 and 2x + 2y - 2z = 5. **Solution** Comparing the given equations of the planes with the equations $A_1 x + B_1 y + C_1 z + D_1 = 0$ and $A_2 x + B_2 y + C_2 z + D_2 = 0$

We get

$$A_{1} = 3, B_{1} = -6, C_{1} = 2$$

$$A_{2} = 2, B_{2} = 2, C_{2} = -2$$

$$\cos \theta = \left| \frac{3 \times 2 + (-6) (2) + (2) (-2)}{\sqrt{\left(3^{2} + (-6)^{2} + (-2)^{2}\right)} \sqrt{\left(2^{2} + 2^{2} + (-2)^{2}\right)}} \right|$$

$$= \left| \frac{-10}{7 \times 2\sqrt{3}} \right| = \frac{5}{7\sqrt{3}} = \frac{5\sqrt{3}}{21}$$

$$\theta = \cos^{-1} \left(\frac{5\sqrt{3}}{21} \right)$$

Therefore,

11.9 Distance of a Point from a Plane

Vector form

Consider a point P with position vector \vec{a} and a plane π_1 whose equation is $\vec{r} \cdot \hat{n} = d$ (Fig 11.19).

Consider a plane π_2 through P parallel to the plane π_1 . The unit vector normal to π_2 is \hat{n} . Hence, its equation is $(\vec{r} - \vec{a}) \cdot \hat{n} = 0$

i.e.,
$$\vec{r} \cdot \hat{n} = \vec{a} \cdot \hat{n}$$

Thus, the distance ON' of this plane from the origin is $|\vec{a} \cdot \hat{n}|$. Therefore, the distance PQ from the plane π_1 is (Fig. 11.21 (a))

i.e.,
$$ON - ON' = |d - \vec{a} \cdot \hat{n}|$$

which is the length of the perpendicular from a point to the given plane. We may establish the similar results for (Fig 11.19 (b)).

Cartesian form

Let $P(x_1, y_1, z_1)$ be the given point with position vector \vec{a} and

$$Ax + By + Cz = D$$

be the Cartesian equation of the given plane. Then

$$\vec{a} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$

$$\vec{N} = A \hat{i} + B \hat{j} + C k$$

Hence, from Note 1, the perpendicular from P to the plane is

$$\left| \begin{array}{c} \underbrace{(x_1 \ \hat{i} + y_1 \ \hat{j} + z_1 \ \hat{k}) \cdot (A \ \hat{i} + B \ \hat{j} + C \ \hat{k}) - D}_{\sqrt{A^2 + B^2 + C^2}} \right| \\ = \left| \begin{array}{c} \frac{A \ x_1 + B \ y_1 + C \ z_1 - D}{\sqrt{A^2 + B^2 + C^2}} \right| \end{array} \right|$$

Example 24 Find the distance of a point (2, 5, -3) from the plane

$$\vec{r} \cdot (6\hat{i} - 3\hat{j} + 2\hat{k}) = 4$$

Solution Here, $\vec{a} = 2\hat{i} + 5\hat{j} - 3\hat{k}$, $\vec{N} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ and d = 4. Therefore, the distance of the point (2, 5, -3) from the given plane is

$$\frac{|(2\hat{i}+5\hat{j}-3\hat{k})\cdot(6\hat{i}-3\hat{j}+2\hat{k})-4|}{|6\hat{i}-3\hat{j}+2\hat{k}|} = \frac{|12-15-6-4|}{\sqrt{36+9+4}} = \frac{13}{7}$$

11.10 Angle between a Line and a Plane

Definition 3 The angle between a line and a plane is the complement of the angle between the line and normal to the plane (Fig 11.20).

Vector form If the equation of the line is $\vec{r} = \vec{a} + \lambda \vec{b}$ and the equation of the plane is $\vec{r} \cdot \vec{n} = d$. Then the angle θ between the line and the normal to the plane is

$$\cos \theta = \left| \frac{\vec{b} \cdot \vec{n}}{|\vec{b}| \cdot |\vec{n}|} \right|$$

Fig 11.20

and so the angle ϕ between the line and the plane is given by 90 – θ , i.e.,

$$\sin\left(90-\theta\right) = \cos\,\theta$$

$$\sin \phi = \left| \frac{\vec{b} \cdot \vec{n}}{|\vec{b}| |\vec{n}|} \right| \text{ or } \phi = \sin^{-1} \left| \frac{\vec{b} \cdot \vec{n}}{|\vec{b}| |\vec{n}|} \right|$$

i.e.

Example 25 Find the angle between the line

$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$$

and the plane 10 x + 2y - 11 z = 3.

Solution Let θ be the angle between the line and the normal to the plane. Converting the given equations into vector form, we have

$$\vec{r} = (-\hat{i} + 3\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 6\hat{k})$$
$$\vec{r} \cdot (10\hat{i} + 2\hat{j} - 11\hat{k}) = 3$$

and

Here

$$\vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$$
 and $\vec{n} = 10\hat{i} + 2\hat{j} - 11\hat{k}$

$$\sin \phi = \left| \frac{(2\hat{i} + 3\hat{j} + 6\hat{k}) \cdot (10\hat{i} + 2\hat{j} - 11\hat{k})}{\sqrt{2^2 + 3^2 + 6^2} \sqrt{10^2 + 2^2 + 11^2}} \right|$$
$$= \left| \frac{-40}{7 \times 15} \right| = \left| \frac{-8}{21} \right| = \frac{8}{21} \text{ or } \phi = \sin^{-1} \left(\frac{8}{21} \right)$$

EXERCISE 11.3

- 1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
 - (a) z = 2 (b) x + y + z = 1
 - (c) 2x + 3y z = 5 (d) 5y + 8 = 0
- 2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3\hat{i} + 5\hat{j} 6\hat{k}$.
- **3.** Find the Cartesian equation of the following planes:

(a)
$$\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 2$$
 (b) $\vec{r} \cdot (2\hat{i} + 3\hat{j} - 4\hat{k}) = 1$

(c)
$$\vec{r} \cdot [(s-2t)\hat{i} + (3-t)\hat{j} + (2s+t)\hat{k}] = 15$$

- **4.** In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
 - (a) 2x + 3y + 4z 12 = 0 (b) 3y + 4z 6 = 0
 - (c) x + y + z = 1 (d) 5y + 8 = 0
- 5. Find the vector and cartesian equations of the planes
 - (a) that passes through the point (1, 0, -2) and the normal to the plane is $\hat{i} + \hat{j} \hat{k}$.
 - (b) that passes through the point (1,4, 6) and the normal vector to the plane is $\hat{i} 2\hat{j} + \hat{k}$.
- 6. Find the equations of the planes that passes through three points.
 - (a) (1, 1, -1), (6, 4, -5), (-4, -2, 3)
 - (b) (1, 1, 0), (1, 2, 1), (-2, 2, -1)
- 7. Find the intercepts cut off by the plane 2x + y z = 5.
- 8. Find the equation of the plane with intercept 3 on the *y*-axis and parallel to ZOX plane.
- 9. Find the equation of the plane through the intersection of the planes 3x y + 2z 4 = 0 and x + y + z 2 = 0 and the point (2, 2, 1).
- 10. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (2\hat{i} + 2\hat{j} 3\hat{k}) = 7$, $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$ and through the point (2, 1, 3).
- 11. Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x y + z = 0.

Find the angle between the planes whose vector equations are 12.

 $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$ and $\vec{r} \cdot (3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$.

- **13.** In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
 - (a) 7x + 5y + 6z + 30 = 0 and 3x y 10z + 4 = 0
 - (b) 2x + y + 3z 2 = 0 and x 2y + 5 = 0
 - (c) 2x 2y + 4z + 5 = 0 and 3x 3y + 6z 1 = 0
 - (d) 2x y + 3z 1 = 0 and 2x y + 3z + 3 = 0
 - (e) 4x + 8y + z 8 = 0 and y + z 4 = 0
- 14. In the following cases, find the distance of each of the given points from the corresponding given plane.

Point	Plane
(a) $(0, 0, 0)$	3x - 4y + 12z = 3
(b) (3, -2, 1)	2x - y + 2z + 3 = 0
(c) $(2, 3, -5)$	x + 2y - 2z = 9
(d) $(-6, 0, 0)$	2x - 3y + 6z - 2 = 0

Miscellaneous Examples

Example 26 A line makes angles α , β , γ and δ with the diagonals of a cube, prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$$

Solution A cube is a rectangular parallelopiped having equal length, breadth and height. Let OADBFEGC be the cube with each side of length *a* units. (Fig 11.21)

The four diagonals are OE, AF, BG and CD.

The direction cosines of the diagonal OE which is the line joining two points O and E are

2019-20